Review Article

A Review on Parkinson's Disease: Its Surgical Inventional Therapies, Pathophysiology and Treatment

Himani Tiwari*, Pradeep K. Goyal, Chetan S. Chauhan, Yuveraj S. Sarangdevot

Dept. of Quality Assurance, B. N. Institute of Pharmaceutical Sci., Udaipur, 313001 India

Parkinsonism disease (PD) is a progressive neurological disorder. Degeneration of dopamine producing cells in the substantia nigra (part of the basal ganglia) leads to a decreased dopamine production. The cause of the damage is unknown. The main known risk factor is age. Parkinson's affects functional activities such as balance, walking, speech, handwriting, typing, fastening buttons, driving, and many other simple, or complex but familiar and routine activities, as they are usually controlled by the mechanisms of dopamine and the basal ganglia. This review briefly focuses on deep brain stimulation neurosurgical treatment. Levodopa was the first drug approved specifically for Parkinson's disease. Levodopa is converted by enzymes in the brain to produce dopamine, thereby supplementing function that has been lost as dopamine-producing neurons die. Topics covered in the review includes pathogenesis, mechanism of action, side effects of medicines and neurological surgery.

Key words: Dopamine production, Levodopa, Parkinsonism disease (PD), Basal Ganglia.

INTRODUCTION

Parkinsonism disease (PD) is a clinical syndrome involving slowed mobility (bradykinesia), at least one of the following three features: tremor, rigidity and postural instability¹. Parkinson's disease (PD) is thought to affect more than 1 million people in the United States alone, 1 of every 100 individuals above the age of 55.² The treatment of PD would be symptomatic (control or reduction of symptoms), neuroprotective (halting of disease progression) and neuroregenerative (reversal of disease process). A PD diagnosis is based on evidence of at least two out of three specific signs and

*Address for Correspondence Heenatiwari31@gmail.com symptoms: tremor, slowed mobility (bradykinesia) and stiffness (rigidity).

Parkinson's disease is disorder of motor and nonmotor symptoms. Motor symptoms such as Bradykinesia (slowness of movement), Rigidity (stiffness of movement), Tremor (involuntary shaking of the hands, feet, arms, legs, jaw or tongue), Postural instability (tendency to fall, usually when pivoting) (Fig.1). Nonmotor symptoms include changes in mood, memory, blood pressure, bowel and bladder function, sleep, fatigue, weight and sensation. Some symptoms have both features (motor and non-motor symptoms) 3 .

Normal movement depends on the

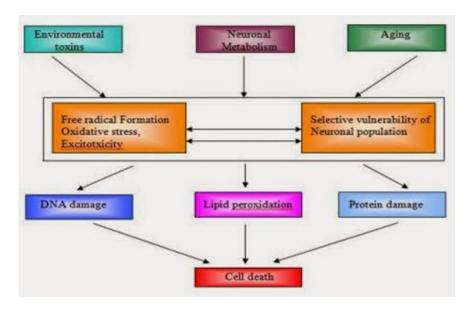


Fig. 1: Mechanisms of Selective neuronal vulnerability in Parkinson's disease¹¹

appropriate production of a chemical messenger or 'neurotransmitter' called dopamine by cells in the area of the brain called the substantia nigra (Fig. 2). Parkinson's disease is a progressive neurological condition, resulting from the degeneration of dopamine producing neurones in the substantia nigra, which is located within the basal ganglia, deep in the lower region of the brain, on either side of the brain stem⁴. Clinical signs of Parkinson's are evident when about 80% of the dopamine-producing neurons are lost. Dopamine is a major neurochemical messenger that promotes the functions of the basal ganglia, which is also where the dopamine is produced^{5,6}.

Etiology of Parkinson's disease

a) Environmental Factors

The possible role of environmental factors

has been addressed by a number of epidemiologic studies that have been well reviewed by others. Many of these studies have shown associations between rural residence, well-water drinking, herbicide exposure and the risk of developing PD⁷. A role for environmental factors in the cause of PD was given major impetus with the discover in 1983 that exposure to Mitochondrial Ι complex inhibitor (MPTP) capable of inducing parkinsonism in humans⁸.

b) Genetic factor

The younger the age of symptom onset, the more likely genetic factors play a dominant role. This concept was based largely on twin studies conducted in the early 1980s that demonstrated a very low rate of concordance for the disease among identical twins⁹. Familial cases are

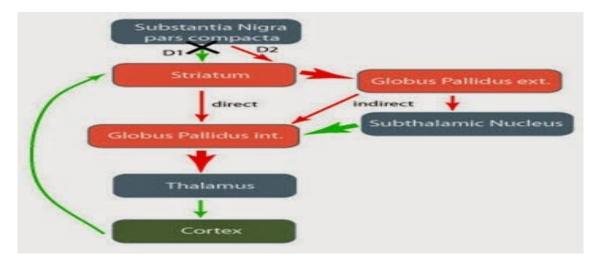


Fig: 2: Pathophysiology of Parkinson's disease. Parkinson's is characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta¹⁴

relatively rare (5-10%). The PD genes that have been identified and studied in some details -synuclein, parkin, and ubiquitin C-terminal hydrolase L1 (UCHL1) appear to participate in the ubiquitin-proteasome pathway, a particularly compelling finding considering the Lewy Body (LB) protein aggregates that characterize PD neuropathology.¹⁰

Pathogenesis of Parkinson's disease

The primary deficit in PD is a loss of the neurons in the substantia nigra pars compacta that provide dopaminergic innervations to the striatum. Dopamine (DA) is synthesized within neuronal terminal from the precursor tyrosine by the sequential actions of the enzymes tyrosine hydroylase, producing the intermediary L-dihydroxyphenylalanine (DOPA) and aromatic L-amino acid decarboxylase. In the terminal, dopamine is transported into storage vesicles by a transporter protein

associated with the vesicular membrane. 12 The actions of dopamine are terminated by the sequential actions of the enzymes catechol-o-methyltransferase (COMT) and monoamine oxidase (MAO) or by reuptake of dopamine into the terminal. A hallmark pathologic feature of PD, and essential for itspathologic diagnosis, is loss of DA neurons of the substantianigra pars compacta (SNpc). The key feature of basal ganglia function, which accounts for the symptoms observed in PD as a result of loss of dopaminergic neurons, is the differential effect of dopamine on the direct and indirect pathways.¹³ dopaminergic neurons of the substantia nigra pars compacta (SNpc) innervate all parts of the striatum; however, the target striatal neurons express distinct types of dopamine receptors. The striatal neurons giving rise to the direct pathway express

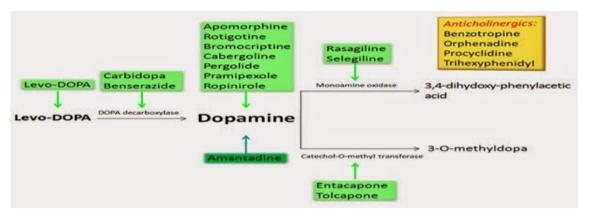


Fig:3: Treatment options for Parkinson's disease and the mechanism of action²⁴

primarily the excitatory D_1 dopamine receptor protein, while the striatal neurons forming the indirect pathway express primarily the inhibitory D_2 type (Fig.2). 2,14,15

Treatment

Parkinson's disease is still an incurable progressive disease, but treatment substantially improves quality of life and functional capacity¹⁵.In clinical practice, dopamine replacement with levodopa provides the most effective symptomatic treatment for PD¹⁶. Other medications used to treat PD include dopamine agonists, anticholinergics, monoamine oxidase type B inhibitors, catechol-Omethyltransferase inhibitors, amantadine, and carbidopa/levodopa, the gold standard of symptomatic PD therapy (Fig. 3)^{17, 18}. The central objective of using any of the below medications is to control or manage motor symptoms. A summary of the medications used to treat the primary motor symptoms of PD including typical forms, mechanism of action and side

effects (Table 1)^{13, 19, 20, 21, 22, 23}

Surgery

Deep brain stimulation (DBS) should only be considered for patients with PD who have displayed a very clear and dramatic When response to L-dopa. motor fluctuations and dyskinesia cannot be by medications, managed surgical treatments for PD are often considered, DBS may provide an alternative. Patients with medication resistant tremor may also benefit from surgical therapy. The current surgery approved by the Food and Drug Administration (FDA) for the treatment of PD includes deep brain stimulation (DBS). In 1997, the FDA approved the use of the Active Tremor Control Therapy which uses a DBS electrode, extension wire and an implantable pulse generator (IPG) for stimulation thalamic to control parkinsonian and essential tremor. DBS is carried out as a staged procedure in which cerebral electrode implantation performed under local or no anesthesia.

Table: 1 Summary of the medications used to treat the Parkinson's disease

Drug	Branded name	Forms available	Mechanism of action	Side effects
Levodopa	Di anaca name	1 or ms available	Meenanism of action	Side effects
Levodopa combined with	Sinemet	Tablets	Levodopa is converted to dopamine by	Nausea
Carbidopa	Sinemet CR	Controlled release tablets	decarboxylation, primarily within the presynaptic terminals of dopaminergic neurons in the striatum. Levodopa is most frequently combined with Carbidopa/	Vomiting Loss of appetite Lightheadedness Lowered blood
	Caramet CR	Controlled release tablets		
	Lecado	Prolonged release tablets	Benserzaide to slow enzyme (aromatic L-amino acid decarboxylase) breakdown of	pressure Confusion
, , , , ,	Parcopa	Oral Disintegrating	Levodopa before it reaches the brain.	
Levodopa combined with benserzaide	Madopar	Capsules, dispersible tablets		
	Madopar CR	Controlled release capsules		
Carbidopa combined with Levodopa and Entacapone	Stalevo	Tablets		
Dopamine Agonists				
Bromocriptine	Parlodal	Tablets, capsules	D ₂ class of dopamine receptors and a partial antoganist of the D ₁ receptors, while pergolide is an agonist of both classes. Ropinirole and pramipexole have selective h	Daytime sleepiness, sudden unanticipated sleep ("sleep attacks"), hallucinations or confusion.
Pergolide	Permax	Tablets		
Ropinirole	Requip	Tablets		
	Adartrel	Tablets		
	Ralnea XL	Prolonged release tablets		
	Spiroco XL	Prolonged release tablets		
Pramipexole	Mirapex	Tablets		
	Mirapexin Pro- longed release	Prolonged release tablets		
MAO-B Inhibitors	8		I	
Selegiline	Eldepryl	Tablets, liquid	Selegiline and rasagiline inhibit the action of monoamine Oxidase isoenzyme type B (MAO-B). MAO-B prevents the breakdown of dopamine, leading to greater dopamine availability.	Dry mouth, anxiety, sleeps disturbances, confusion, nausea,
	Zelapar	Tablets that dissolve on the tongue		
Rasagiline	Azilect	Tablets		dizziness and Hallucinations.
COMT-Inhibitors			dopamine availability.	Handemations.
Tolcapone	Tasmar	Tablets	Catechol O-methyltransferase (COMT)	Nausea, orthostatic
Entacapone	Comtan	Tablets	inhibitors allow a larger amount of Levodopa to reach the brain, raising dopamine levels there. They help provide a more stable, constant supply, which makes its beneficial effects last longer and manage off times better.	hypotension, confusion and hallucination. Important adverse effect associated with tolcapone is hepatotoxicity.
Glutamate Antagonist				
Amantadine	Symmetrel	Capsules, syrup	Amantadine's mechanism of action is not clear. A blockade of N-methyl-D aspartate (NMDA) glutamate receptors and an anticholinergic effect are proposed, Whereas other evidence suggests it might alter dopamine release or re-uptake.	Dizziness, dry mouth, lithargy , insomnia, confusion and hallucinations
Anticholinergics		Γ		T
Trihexyphenidyl Benztropine mesylate	Artane Cogentin	Tablets, Elixir Tablets	The actual mechanism of action is not clear. In Parkinson's diseasecauses a relative imbalance between the dopaminergic and cholinergic neurological pathways. It has long been believed that anticholinergics can correct this imbalance in less advanced forms of Parkinson's by reducing the degree of neurotransmission mediated by neostriatal acetylcholine.	Sedation, Mental confusion, Constipation, Urinary retention and Blurred vision

The electrode can be placed in different parts of the brain. Thalamic stimulation in which the electrode tip is placed in the ventrointermediate (VIM) nucleus of the thalamus primarily to control tremor. The electrode tip can be placed in the Globus pallidus interna (GPi) to control the primary symptoms of PD (tremor, rigidity, slowness) and dyskinesia. the stimulation of Subthalamic nucleus the electrode tip is placed in the STN to control the primary symptoms of PD (tremor, rigidity, and slowness) and dyskinesia. During postoperative management, stimulation is increased while L-dopa dosage is reduced. DBS treat the underlying symptoms of the disease, not the cure of PD. Adverse behavioral effects are mania, laughing episodes, impulsive behaviors, depression anxiety have occurred during the first few months after surgery^{25, 26}.

CONCLUSION

The pathogenesis, medication and surgery of PD are presented in this review; briefly highlight the more important aspects of these topics. Although Parkinson's disease was first described almost two centuries ago, it is only recently that we have begun to understand the complex nature of the functional deficits that it entails or its neurobiological causes. In this review, briefly discussed about medications which currently available for symptomatic treatment and future developments in the treatment of PD. PD treatment plan consist of appropriate medications, regular exercise, a healthy diet, social engagement and cognitive activities, counseling and other therapies. Deep brain stimulation (DBS) surgery may be a reasonable therapeutic option for some individuals.

REFERENCE

- 1. Scottish Intercollegiate Guidelines Network (SIGN). Diagnosis and pharmacological management of Parkinson's disease. A national clinical guideline SIGN publication; 2010 Jan no. 113:1-61.
- 2. Zigmond MJ, Burke RE. Pathophysiology of Parkinson's disease. Neuropsychopharmacology: The 5th Gen. of Progress, American College of Neuropsychopharmacology;2002:1781-93.
- Houghton D, Hurtig H, Metz S,
 Brandabur M. Parkinson's Disease:
 Medications. National Parkinson
 Foundation; 2014: 1-72.
- 4. siberiantimes.com/science/casestudy/ne
 ws/a-major-breakthrough-in-treating-parkinsons-disease-cannot-reach-patients/
 Accessed on Nov. 21, 2014.
 5. Aragonans A, Ana BR, Ferguson JC,
 Jones C, Tugwell C. The Professional's
 Guide to Parkinson's disease. Parkinson's

disease Society of the United Kingdom, 2007; 158 p. England and Wales No. 258197 and in Scotland No. SC037554.

- 6. wearingoff.eu/what-is-parkinsons / causes -of-parkinsons-disease/ Accessed on Nov. 23, 2014.
- 7. Tanner CM. Epidemiology of Parkinson's disease. Neurol Clin 1992; 10:317–29.
- 8. Langston JW, Ballard PA, Tetrud JW. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219:979–80.
- 9. Ward CD, Duvoisin RC, and Ince SE, et al. Parkinson's disease in 65pairs of twins and in a set of quadruplets. Neurology 1983;33:815–24.
- 10. Dauer W, Przedborski S. Parkinson's Disease: Review Mechanisms and Models. Neuron 2003Sept;39: 889–909.
- pharmainfo.net/reviews/parkinsons-disease Accessed on Nov.22, 2014.sharinginhealth.ca/conditions_and_d iseases/parkinsons.html Accessed on Nov. 23, 2014.
- 13. Hardman JG, Limbird LE, Gilman GA. Treatment of central nervous system degenerative disorders. 10th Ed. The pharmacological basis of therapeutics; 2001. 22; p.549-60.
- 14.blogs.brandeis.edu/flyonthewall/translat ional-findings-how-fruit-flies-are-helping-us-understand-parkinsons-disease/Acc-

essed on Nov. 22, 2014.

- 15. Lees AJ, Hardy J, Revesz T. Parkinson's disease. Seminar 2009 June; 373:2055-66.
- 16. Hametner E, Seppi K, Poewe W. The clinical spectrum of levodopa-induced motor complications. J Neurol 2010; 257(2):S268-S275.
- 17. Wood LD, Neumiller JJ, Carlson JD, Setter SM, Corbett CF. Challenges of medication management in hospitalized patients with Parkinson's disease. Am J Health-Syst Pharm 2010; 67:2059-63. 18. Jankovic J, Aguilar LG. Current approaches to the treatment of Parkinson's disease. Neuropsychiatr Dis Treat 2008; 4(4):743-57.
- 19. Parkinson's disease Society of the United Kingdom. Drug treatments for Parkinson. A charity registered in England and Wales (258197) and in Scotland (SC037554); 2012 Aug.
- 20. Robottom BJ. Efficacy, safety, and patient preference of monoamine oxidase B inhibitors in the treatment of Parkinson's disease. Dove press 2011 Jan; 5:57–64.
- 21. Brocks DR. Anticholinergic drugs used in Parkinson's disease: An overlooked class of drugs from a pharmacokinetic perspective. J Pharm Pharmaceut Sci 1999; 2 (2):39-46.22. michaeljfox.org/mobile/topic.php?medicat

Accessed on 16 sept, 2014. 23. Horstink M, Tolosab E, Bonuccellic U, Deuschld G, Friedmane A, Kanovskyf P, Larseng JP, Leesh A, Oerteli W, Poewej W, Rascolk O, Sampaiol C. Review of the therapeutic management of Parkinson's disease. Report of a joint task force of the European Federation of Neurol. Societies and the Movement Disorder Society-European Section. Part I: early (uncomplicated) Parkinson's disease. European J. of Neurol. 2006; 13:1170-85. 24. discoverymedicine.com/ Ming-mingWen/2012/12/24/advances-and-challenges
-in-the-dosage-form-design-for-thetreatment-of-parkinsons-disease/ Accessed
on Nov. 22, 2014 25.
25. Tarsy D. Deep Brain Stimulation in
Parkinson Disease: Important Information
for Patients and Families. Research report,
Parkinson report; Winter 2007:8-10.26.
Pahwa R, Lyons KE, Nazzaro M. Deep
Brain Stimulation for Parkinson's disease.
Stereotactic and Functional Neurosurgery
Univ. of Kansas Medical Center. Accessed
on Nov. 11, 2014